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1 Introduction 
This report documents the process of designing and testing a 128 bit microprocessor to 
implement a limited set of instructions.  The goal of this project is to create a 
microprocessor and maximize its speed.  The design process is outlined below: 

• Develop a conceptual design 
• Divide the design into modules 
• Implement each module with Register Transfer Logic (RTL) style Verilog 

Hardware Description Language (HDL) 
• Test each module functionally using NcVerilog 
• Synthesize all modules developed using Synopsys Design Compiler 
• Verify each module synthesizes correctly via post synthesis functional testing 
• Integrate all modules and test functionality 
• Synthesize the Central Processing Unit (CPU) module 
• Verify the top level design synthesized correctly via post synthesis functional 

testing 
Note: The process described above must be iterated to develop an optimal solution. 
 
The instruction following instruction set has been implemented: 

• Wide word addition (WADD) 
• Wide word AND (WAND) 
• Wide word load from data memory using immediate addressing (WLD) 
• Wide word signed multiplication of the even bytes or double-bytes (a double-byte 

is 16 bits) (WMULES) 
• Wide word signed multiplication of the odd bytes or double-bytes (WMULOS) 
• Wide word unsigned multiplication of the even bytes or double-bytes (WMULEU) 
• Wide word unsigned multiplication of the odd bytes or double-bytes (WMULOU) 
• Wide word move (WMV) 
• Wide word NOT (WNOT) 
• Wide word OR (WOR) 
• Wide word byte permute (WPRM) 
• Wide word shift logical left (WSLL) 
• Wide word shift logical left immediate (WSLLI) 
• Wide word shift arithmetic right (WSRA) 
• Wide word shift arithmetic right immediate (WSRAI) 
• Wide word shift logical right (WSRL) 
• Wide word shift logical right immediate (WSRLI) 
• Wide word store to data memory using immediate addressing (WST) 
• Wide word subtraction (WSUB) 
• Wide word XOR (WXOR) 

Note: branch and jump commands were not implemented - this greatly simplifies the 
design. 
 
The design of the microprocessor will be constrained by the following: 

• The design must interface to a predefined Instruction Memory RTL style Verilog 
HDL module (this module is included in section xx). 
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• The design must interface to a predefined Data Memory RTL style Verilog HDL 
module (this module is included in section xx). 

• Top level functional testing must be accomplished using a predefined Verilog 
HDL test bench (this module is included in section xx). 

• The multiplier will not use the “*” symbol available in RTL style Verilog HDL 
(this is because the synopsis design compiler available at USC uses a sub-optimal 
multiplier when it encounters the “*” symbol in RTL style Verilog HDL). 

 
Benchmarking is a common practice of measuring speed in the industry.  Benchmarking 
will be used to measure the speed of the processor developed.  Several benchmarks will 
be provided to test our microprocessor.  We will measure the execution time the 
processor requires to run each benchmark program and report the results. 
 
The basic modules used to construct the microprocessor are described in the following 
subsections. 

1.1 Arithmetic Logic Unit (ALU) Module 

1.1.1 Inputs and Outputs 
Inputs: [0:4] aluop, [0:1] ww, [0:127] reg_a, [0:127] reg_b 
Outputs: [0:127] result 

1.1.2 Functional Test Results 
The ALU is composed of addition (see section 3), shift (see section 4), and multiplication 
(see section 5) logic. 

1.1.3 Synthesis Results 
The ALU is composed of addition (see section 3), shift (see section 4), and multiplication 
(see section 5) logic. 

1.1.4 Post-Synthesis Functional Test Results 
The ALU is composed of addition (see section 3), shift (see section 4), and multiplication 
(see section 5) logic. 

1.2 Control Module 

1.2.1 Inputs and Outputs 
Inputs: [0:31] instruction 
Outputs: [0:4] aluop, [0:4] rrdaddra, [0:4] rrdaddrb, [0:4] rwraddrd, [0:2] regop, 
[0:1] ww, [0:20] maddr, memEn, memWrEn, [0:15] wbyteen, [0:127] immediate, 
(reginmuxop, aluinmuxop will also be included to control multiplexers in the 
pipeline as described in the next section) 
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1.2.2 Functional Test Results 
Functional testing of the control logic was performed to ensure that the control logic was 
generating the expected signals for a given input stream of instructions.  The input stream 
of instructions tested *each possible instruction at the time of implementation. 

*The multiplication instructions had not implemented before the original 
Functional testing of the control logic, and therefore are not tested at the module 
level. 

The following instructions were tested and the output of the control module was carefully 
scrutinized to the internal logic was correct.  As can be seen in the waveforms below, the 
control logic is very important – it provides signals to all other modules to control their 
operation. 
 
The following instructions were checked: 
32'b00010001101010100101100000000000; // ADD 
32'b00010001101010100101101001000000; // ADD 
32'b00010001101010100101110000000000; // ADD 
32'b00010001101010100101110001000000; // ADD 
32'b00010001101010100101110010000000; // ADD 
32'b00010001101010100101110010001001; // AND 
32'b00000101101000000000000000000001; // LD 
32'b00100001101010100000010010001001; // VMV 
32'b00010001101010100000010100001000; // NOT 
32'b00010001101010100101110101001010; // OR 
32'b00010001101010100101110100001100; // PRM 
32'b00010001101010100101110101010000; // SLL 
32'b00010001101010100111110110010001; // SLLI 
32'b00010001101010100101110110010110; // SRA 
32'b00010001101010100111110110010111; // SRAI 
32'b00010001101010100101110110010100; // SRL 
32'b00010001101010100111110110010101; // SRLI 
32'b00001001101000000000000000000001; // ST 
32'b00010001101010100101111001000001; // SUB 
32'b00010001101010100101111101001011; // XOR 
32'b00000001101010100101110110001011; // NOP 
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1.2.3 Synthesis Results 
The following results were found in the control.area report: 

Number of ports:  226 
Number of nets:  129 
Number of cells:  98 
Number of references: 9 
Combinational area:  2548.000000 
Noncombinational area: 0.000000 
Total cell area:  2548.000000 

 
The following timing information was extracted from the timing report: 

Max delay:   0.95 delay units. 
 
The check_design report indicated that some input nets were not used and that some 
output nets were shorted together, or shorted to logic 0.  We looked into these and found 
that all warnings were expected. 

1.2.4 Post-Synthesis Functional Test Results 
Using the same instruction set, the same results were obtained from the netlist generated 
by the synthesis tool (see below). 
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1.3 Data Memory Module (provided – see constraints above) 

1.3.1 Inputs and Outputs 
Inputs: clk, wren, memEn, [0:7] memAddr, [0:127] dataIn 
Outputs: [0:127] dataOut 

1.3.2 Functional Test Results 
There was no need to test the data memory module individually since it was provided to 
us and we were unable to alter it. 

1.3.3 Synthesis Results 
The data memory module was unsynthesizeable, as advertized when it was provided to us, 
therefore we did not attempt to synthesize it. 

1.3.4 Post-Synthesis Functional Test Results 
Since no synthesis was performed, no post synthesis functional testing was performed 
either. 

1.4 Instruction Memory Module (provided – see constraints 
above) 

1.4.1 Inputs and Outputs 
Inputs: [0:7] addr 
Outputs: [0:31]instruction 



EE577b Troy Processor Project 
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com 

 Page 9 of 48 

1.4.2 Functional Test Results 
There was no need to test the instruction memory module individually since it was 
provided to us and we were unable to alter it. 

1.4.3 Synthesis Results 
The instruction memory module was unsynthesizeable, as advertized when it was 
provided to us, therefore we did not attempt to synthesize it. 

1.4.4 Post-Synthesis Functional Test Results 
Since no synthesis was performed, no post synthesis functional testing was performed 
either. 

1.5 Program Counter Module 

1.5.1 Inputs and Outputs 
Inputs: clk and reset 
Outputs: [0:20] program_counter 

1.5.2 Functional Test Results 
The following waveform was generated by the program counter.  As you can see, the 
value of the program counter increments by 4 each positive clock edge – which will 
allow us to address the next 32 bit wide memory location in the instruction memory. 

 

1.5.3 Synthesis Results 
The following results were found in the control.area report: 

Number of ports:  34 
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Number of nets:  102 
Number of cells:  66 
Number of references: 4 
Combinational area:  3576.000000 
Noncombinational area: 3072.000000 
Total cell area:  6648.000000 

 
The following timing information was extracted from the timing report: 

Max delay:   5.0 delay units. 
 
The check_design report indicated that one of the synthesized cells did not drive any nets.  
We kept this in mind while testing the functionality of the synthesized code and found 
that the warning could be ignored (see next section). 

1.5.4 Post-Synthesis Functional Test Results 
Using the same inputs, the same results were obtained from the netlist generated by the 
synthesis tool (see below). 

 

1.6 Register File Module 

1.6.1 Inputs and Outputs 
Inputs: clk, [0:127] wrdata, wren, rd1en, rd2en, [0:4] wraddr, [0:4] rd1addr, [0:4] rd2addr, 
[0:15] wbyteen 
Outputs: [0:127] rd1data, [0:127] rd2data 
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1.6.2 Functional Test Results 
It is difficult to fit the results into a single screen shot, but below are a few screenshots 
showing that several registers are written to then later the correct values are read from the 
registers. 
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1.6.3 Synthesis Results 
The following results were found in the control.area report: 

Number of ports:  24 
Number of nets:  421 
Number of cells:  405 
Number of references: 10 
Combinational area:  9600.000000 
Noncombinational area: 6912.000000 
Total cell area:  16512.000000 

 
The following timing information was extracted from the timing report: 

Max delay:   2.25 delay units. 
 
The check_design report was empty, indicating no errors and no warnings. 

1.6.4 Post-Synthesis Functional Test Results 
Using the same inputs, the same results were obtained from the netlist generated by the 
synthesis tool (see below). 
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1.7 Mux Module 

1.7.1 Inputs and Outputs 
Inputs: [0:127] dataIn1, [0:127] dataIn2, select 
Outputs: [0:127] dataOut 

1.7.2 Functional Test Results 
As can be seen below, the mux functions as expected. 
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Due to the simplicity of the module (out<=sel?inb:ina;), synthesis and post synthesis 
testing were not required. 

2 CPU Pipeline 
Minimizing execution time is the goal of this project.  Therefore a pipeline was 
implemented to increase the throughput.  The benchmark instruction set is expected to be 
long, so the small additional latency should be overshadowed by the increase in 
throughput.  Traditionally, processors are pipelined into the following 5 stages: 

• Instruction Fetch (IF) – An instruction is fetched from the instruction memory 
• Instruction Decode and Register Fetch (ID/RF) – The instruction is decoded and 

the applicable registers are fetched from the register file 
• Execution (EX) – The ALU is used to perform the required operation on the data 

from the registers 
• MEMory access (MEM) – the data memory is written to or read from 
• WriteBack – the result of the data memory or ALU operation are written back to 

the register file. 
 
For this project, we were able to combine the MEM and EX stages of the pipeline since 
each of the instructions in the instruction set EITHER access memory OR use the ALU 
(but not both, as non-immediate memory access would).  Therefore, we implemented the 
following 4-stage pipeline: 

• Stage 1 – IF 
• Stage 2 – ID/RF 
• Stage 3 – EX/MEM 
• Stage 4 – WB 
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Flip Flops (FF) were used between stages 1 and 2, between stages 2 and 3, and between 
stages 3 and 4 to create the pipeline.  The FFs between stages 1 and 2 are contained in a 
module called Pipe1.  The FFs between stages 2 and 3 are contained in a module called 
Pipe2.  The FFs between stages 3 and 4 are contained in a module called Pipe3.  The 
entire pipeline is shown in the following figures: 
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It should be noted that the register file in stage 2 is the same register file in stage 4.  In 
stage 2, only the read capability of the register file is exercised.  In stage 4, only the write 
capability is exercised.  Therefore an instruction in stage 2 can use the read side of the 
register file while an instruction in stage 4 of the pipeline can simultaneously access the 
write side of the register file. 
 
As with any pipeline, it can only be operated at the speed of the slowest stage.  In the 
pipeline design shown above, the MEM/EX stage (stage 3) is the slowest stage.  Since the 
module representing the data memory is provided, there is no chance to optimize it.  
However, the ALU module is not provided, and therefore can be carefully designed to 
minimize latency.  This design will be described in the following sections (3-6). 
 
When a processor is pipelined, the possibility for data hazards is created.  Section 7 
addresses these hazards and shows how data forwarding was used to eliminate all data 
hazards. 

2.1 CPU Module 

2.1.1 Inputs and Outputs 
Inputs: clk, reset, [0:31] instruction, [0:31] pc, [0:127] dataIn, 
Outputs: [0:127] dataOut, memEn, memWrEn, memAddr 
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2.1.2 Functional Test Results 
The following instruction set was used to test the cpu module: 

07E00000  // wld wr31, 0 ; 
04A00001  // wld wr5, 1 ; 
121FF881  // wsubaw wr16, wr31, wr31 ; 
1225FA4B  // wxoruh wr17, wr5, wr31 ; 
11F00008  // wnotab wr15, wr16 ; 
1245FC89  // wandew wr18, wr5, wr31 ; 
23100400  // wmveb wr24, wr16 ; 
23050500  // wmvob wr24, wr5 ; 
1265FD4A  // woroh wr19, wr5, wr31 ; 
129FFB40  // wadddh wr20, wr31, wr31 ; 
102F3815  // wsrliab wr1, wr15, 7 ; 
12BFF850  // wsllah wr21, wr31, wr31 ; 
12DFC016  // wsraab wr22, wr31, wr24 ; 
12FFC094  // wsrlaw wr23, wr31, wr24 ; 
133F1011  // wslliab wr25, wr31, 2 ; 
135F0857  // wsraiah wr26, wr31, 1 ; 
0AA00002  // wst wr21, 0x02 ; 
13FFF80A  // worab wr31, wr31, wr31 ; 
13FFF80A  // worab wr31, wr31, wr31 ; 
13FFF80A  // worab wr31, wr31, wr31 ; 
13FFF80A  // worab wr31, wr31, wr31 ; 
04E00003  // wld wr7, 3 
05000004  // wld wr8, 4 
13C74000  // addab wr30, wr7, wr8 ; 
13A74000  // addab wr29, wr7, wr8 ; 
13874000  // addab wr28, wr7, wr8 ; 
13674000  // addab wr27, wr7, wr8 ; 
13C74044  // mules wr30, wr7, wr8 ; 
13A74045  // muleu wr29, wr7, wr8 ; 
13874046  // mulos wr28, wr7, wr8 ; 
13674047  // mulou wr27, wr7, wr8 ; 
00000000  // NOP ; 
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The outputs were carefully scrutinized to ensure that re result of each operation was 
stored in the correct location. 
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And the data memory was correct after the run: 
Memory location #          0 : 0011332266775544ccddffeeaabb9988  
Memory location #          1 : 55555555555555555555555555555555  
Memory location #          2 : 0022cc883b805440a0008000d8008800  
Memory location #          3 : 00000000000000000000000000000202  
Memory location #          4 : 00000000000000000000000000000303  
Memory location #          5 : xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  
… 
Memory location #         63 : xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
 
At this point hazard detection had already been implemented as can be seen by the 
signals hz1_a_or_d, hz1_b, hz3_a_or_d, and hz3_b.  Detailed disussion about the hazards 
in the above functional test will be discussed in section 7. 
 

2.1.3 Synthesis Results 
See section 9. 

2.1.4 Post-Synthesis Functional Test Results 
The post synthesis functional test results show that the cpu has the same functionality 
after synthesis. 
 
As part of this project, the following 6 random instruction sets were generated to 
determine the speed of the pipelined processor: 

 
<INCLUDE HERE> 
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3 Instruction set implementation 
The instruction set introduced in the introduction is described in detail in this section.  
The rest of this section has been copied with permission from the USC document for 
EE577B Fall 2007 isa_ov.pdf. 
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4 Adder/Subtractor design 
The Synopsys DesignWare intellectual property (IP) library consists of high performance 
IP blocks for system development and integration to reduce development time, and time-
to-market (Cohen et al, 1996). Given the short design time of this processor project and 
the high performance requirement, we decided to utilize the virtual microarchitecture 
library from DesignWare IP to implement the adder design (Synopsys, 2001). This would 
save us time from implementing advanced adder designs, using Verilog, in structural 
RTL. It would also save us numerous man-hours from iterating the design process to 
verify that the design functions correctly, and optimize the design for high performance 
within our aggressive schedule. 
 
(Koren, 1993) 
 
Some adder designs 
http://www.ece.iit.edu/~jstine/book/ 
 
http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=835116 
 
Simulators for various adder designs, along with other arithmetic circuits, can be obtained 
at http://www.ecs.umass.edu/ece/koren/arith/simulator/.  

4.1 Functional Test Results 
See section 8. 
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4.2 Synthesis Results 
The following results were found in the control.area report: 

Number of ports:  391 
Number of nets:  4270 
Number of cells:  3623 
Number of references: 43 
Combinational area:  17115.000000 
Noncombinational area: 0.000000 
Total cell area:  17115.000000 

 
The following timing information was extracted from the timing report: 

Max delay:   7.11 delay units. 
 
The check_design report indicated that six of the synthesized cells did not drive any nets.  
We kept this in mind while testing the functionality of the synthesized code and found 
that the warnings could be ignored. 

4.3 Post-Synthesis Functional Test Results 
See section 10. 

5 Shifter Design 

5.1 Functional Test Results 
See section 8. 

5.2 Synthesis Results 
TBD – redesigned and removed latches 

5.3 Post-Synthesis Functional Test Results 
See section 10. 

6 Multiplier Design 

6.1 Functional Test Results 
See section 8. 

6.2 Synthesis Results 
The following results were found in the control.area report: 

Number of ports:  391 
Number of nets:  32234 
Number of cells:  27146 
Number of references: 222 
Combinational area:  1410694.000000 
Noncombinational area: 0.000000 
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Total cell area:  1410694.000000 
 
The following timing information was extracted from the timing report: 

Max delay:   37.5 delay units. 
This is by far the worst delay of any of the ALU functions.  Therefore this is on the 
critical path in the pipelined CPU.  See Section 11 for more about this. 
 
The check_design report indicated that 777 of the synthesized cells did not drive any nets.  
We kept this in mind while testing the functionality of the synthesized code and found 
that the warnings could be ignored. 

6.3 Post-Synthesis Functional Test Results 
See section 10. 
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7 Hazard management and data forwarding 
Hazard detection occurs due to the pipelining process when multipleinstructions in the 
pipeline are accessing the same storage location (register file memory location).  The 
hazard detection module inspects theinstruction signals in all stages of the pipeline at the 
same time as shown below: 
 

 

                                         
 
There are two types of data hazards in the 4 stage pipeline described in section 2.  These 
hazards are described below. 
 

 
 



EE577b Troy Processor Project 
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com 

 Page 42 of 48 

Data forwarding is used to overcome HZ1.  The data paths used to forward data and avert 
HZ1 are highlighted in the figure below: 
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Data forwarding is used to overcome HZ3.  The data paths used to forward data and avert 
HZ3 are highlighted in the figure below: 
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7.1 Functional Test Results 
From section 2, the following hazards exist: 
 

HEX INSTR BINARY INSTRUCTION TYPE REGD REGA REGB 

HAZARD 
DETECTION 
SIGNALS 

07E00000   000001_11111_00000_00000_00000000000 wld wr31, 0  

04A00001   000001_00101_00000_00000_00000000001 wld wr5, 1  

121FF881   000100_10000_11111_11111_00010000001 wsubaw wr16, wr31, wr31 HZ1_a_or_d, HZ1_b 

1225FA4B   000100_10001_00101_11111_01001001011 wxoruh wr17, wr5, wr31 HZ1_a_or_d 

11F00008   000100_01111_10000_00000_00000001000 wnotab wr15, wr16  HZ1_a_or_d 

1245FC89   000100_10010_00101_11111_10010001001 wandew wr18, wr5, wr31  

23100400   001000_11000_10000_00000_10000000000 wmveb wr24, wr16   

23050500   001000_11000_00101_00000_10100000000 wmvob wr24, wr5   

1265FD4A   000100_10011_00101_11111_10101001010 woroh wr19, wr5, wr31  

129FFB40   000100_10100_11111_11111_01101000000 wadddh wr20, wr31, wr31  

102F3815   000100_00001_01111_00111_00000010101 wsrliab wr1, wr15, 7  

12BFF850   000100_10101_11111_11111_00001010000 wsllah wr21, wr31, wr31  

12DFC016   000100_10110_11111_11000_00000010110 wsraab wr22, wr31, wr24  

12FFC094   000100_10111_11111_11000_00010010100 wsrlaw wr23, wr31, wr24  

133F1011   000100_11001_11111_00010_00000010001 wslliab wr25, wr31, 2  

135F0857   000100_11010_11111_00001_00001010111 wsraiah wr26, wr31, 1  

0AA00002   000010_10101_00000_00000_00000000010 wst wr21, 2  

13FFF80A   000100_11111_11111_11111_00000001010 worab wr31, wr31, wr31  

13FFF80A   000100_11111_11111_11111_00000001010 worab wr31, wr31, wr31  

13FFF80A   000100_11111_11111_11111_00000001010 worab wr31, wr31, wr31 

HZ1_a_or_d, HZ1_b, 

HZ3_a_or_d, HZ3_b 

13FFF80A   000100_11111_11111_11111_00000001010 worab wr31, wr31, wr31 

HZ1_a_or_d, HZ1_b, 

HZ3_a_or_d, HZ3_b 

04E00003 000001_00111_00000_00000_00000000011 wld wr7 3 HZ3_a_or_d, HZ3_b 

05000004 000001_01000_00000_00000_00000000100 wld wr8 4  

13C74000 000100_11110_00111_01000_00000000000 addab wr30 wr7 wr8 HZ1_a_or_d 

13A74000 000100_11101_00111_01000_00000000000 addab wr29 wr7 wr8 HZ1_b, HZ3_b 

13874000 000100_11100_00111_01000_00000000000 addab wr28 wr7 wr8  

13674000 000100_11011_00111_01000_00000000000 addab wr27 wr7 wr8  

13C74044 000100_11110_00111_01000_00001000100 mules wr30 wr7 wr8  

13A74045 000100_11101_00111_01000_00001000101 muleu wr29 wr7 wr8  

13874046 000100_11100_00111_01000_00001000110 mulos wr28 wr7 wr8  

13674047 000100_11011_00111_01000_00001000111 mulou wr27 wr7 wr8  

00000000   000000_00000_00000_00000_00000000000      
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From section 2, the following waveform was generated depicting the hazard detection 
signals hz1_a_or_d, hz1_b, hz3_a_or_d, and hz3_b.  It can be seen that the waveform 
matches the expected result above. 
 

 
 

8 Optimization 
ME 

9 Synthesis Report 
ME 
(nicely compiled not the output of the tool) 

10 Final specifications of your designs 
ME 
(claims) 

11 Possible Future Enhancements 
If more time was allowed to complete this project, we would have investigated other 
multiplication algorithms and even pipelined the multiplier because it is the slowest 
function of the ALU.  If the multiply operation took multiple clocks to accomplish and all 
most other instructions only took a single clock in the MEM/EX stage, then overall the 
program’s execute time for the benchmarks would decrease because the clock frequency 
that controls the pipeline could be increased. 
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12 Conclusion 
Whatever you do, reduce the workload for the next class you teach – this semester 
required more hours per week for school than previous semesters when I took 2 classes, 
and was miserable - seriously.  I am so glad it is finally over. 
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