
EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 1 of 48

EE577B Troy Processor Project Report

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 2 of 48

TABLE OF CONTENTS
1 Introduction...4

1.1 Arithmetic Logic Unit (ALU) Module ...5
1.1.1 Inputs and Outputs ...5
1.1.2 Functional Test Results ..5
1.1.3 Synthesis Results ...5
1.1.4 Post-Synthesis Functional Test Results...5

1.2 Control Module ...5
1.2.1 Inputs and Outputs ...5
1.2.2 Functional Test Results ..6
1.2.3 Synthesis Results ...7
1.2.4 Post-Synthesis Functional Test Results...7

1.3 Data Memory Module (provided – see constraints above)8
1.3.1 Inputs and Outputs ...8
1.3.2 Functional Test Results ..8
1.3.3 Synthesis Results ...8
1.3.4 Post-Synthesis Functional Test Results...8

1.4 Instruction Memory Module (provided – see constraints above).......................8
1.4.1 Inputs and Outputs ...8
1.4.2 Functional Test Results ..9
1.4.3 Synthesis Results ...9
1.4.4 Post-Synthesis Functional Test Results...9

1.5 Program Counter Module...9
1.5.1 Inputs and Outputs ...9
1.5.2 Functional Test Results ..9
1.5.3 Synthesis Results ...9
1.5.4 Post-Synthesis Functional Test Results... 10

1.6 Register File Module ... 10
1.6.1 Inputs and Outputs ... 10
1.6.2 Functional Test Results .. 11
1.6.3 Synthesis Results ... 12
1.6.4 Post-Synthesis Functional Test Results... 12

1.7 Mux Module .. 14
1.7.1 Inputs and Outputs ... 14
1.7.2 Functional Test Results .. 14

2 CPU Pipeline... 15
2.1 CPU Module.. 22

2.1.1 Inputs and Outputs ... 22
2.1.2 Functional Test Results .. 23
2.1.3 Synthesis Results ... 25
2.1.4 Post-Synthesis Functional Test Results... 25

3 Instruction set implementation... 26
4 Adder/Subtractor design .. 38

4.1 Functional Test Results.. 38
4.2 Synthesis Results ... 39
4.3 Post-Synthesis Functional Test Results .. 39

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 3 of 48

5 Shifter Design.. 39
5.1 Functional Test Results.. 39
5.2 Synthesis Results ... 39
5.3 Post-Synthesis Functional Test Results .. 39

6 Multiplier Design .. 39
6.1 Functional Test Results.. 39
6.2 Synthesis Results ... 39
6.3 Post-Synthesis Functional Test Results .. 40

7 Hazard management and data forwarding .. 41
7.1 Functional Test Results.. 45

8 Optimization.. 46
9 Synthesis Report.. 46
10 Final specifications of your designs ... 46
11 Possible Future Enhancements... 46
12 Conclusion .. 47
13 References ... 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 4 of 48

1 Introduction
This report documents the process of designing and testing a 128 bit microprocessor to
implement a limited set of instructions. The goal of this project is to create a
microprocessor and maximize its speed. The design process is outlined below:

• Develop a conceptual design
• Divide the design into modules
• Implement each module with Register Transfer Logic (RTL) style Verilog

Hardware Description Language (HDL)
• Test each module functionally using NcVerilog
• Synthesize all modules developed using Synopsys Design Compiler
• Verify each module synthesizes correctly via post synthesis functional testing
• Integrate all modules and test functionality
• Synthesize the Central Processing Unit (CPU) module
• Verify the top level design synthesized correctly via post synthesis functional

testing
Note: The process described above must be iterated to develop an optimal solution.

The instruction following instruction set has been implemented:

• Wide word addition (WADD)
• Wide word AND (WAND)
• Wide word load from data memory using immediate addressing (WLD)
• Wide word signed multiplication of the even bytes or double-bytes (a double-byte

is 16 bits) (WMULES)
• Wide word signed multiplication of the odd bytes or double-bytes (WMULOS)
• Wide word unsigned multiplication of the even bytes or double-bytes (WMULEU)
• Wide word unsigned multiplication of the odd bytes or double-bytes (WMULOU)
• Wide word move (WMV)
• Wide word NOT (WNOT)
• Wide word OR (WOR)
• Wide word byte permute (WPRM)
• Wide word shift logical left (WSLL)
• Wide word shift logical left immediate (WSLLI)
• Wide word shift arithmetic right (WSRA)
• Wide word shift arithmetic right immediate (WSRAI)
• Wide word shift logical right (WSRL)
• Wide word shift logical right immediate (WSRLI)
• Wide word store to data memory using immediate addressing (WST)
• Wide word subtraction (WSUB)
• Wide word XOR (WXOR)

Note: branch and jump commands were not implemented - this greatly simplifies the
design.

The design of the microprocessor will be constrained by the following:

• The design must interface to a predefined Instruction Memory RTL style Verilog
HDL module (this module is included in section xx).

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 5 of 48

• The design must interface to a predefined Data Memory RTL style Verilog HDL
module (this module is included in section xx).

• Top level functional testing must be accomplished using a predefined Verilog
HDL test bench (this module is included in section xx).

• The multiplier will not use the “*” symbol available in RTL style Verilog HDL
(this is because the synopsis design compiler available at USC uses a sub-optimal
multiplier when it encounters the “*” symbol in RTL style Verilog HDL).

Benchmarking is a common practice of measuring speed in the industry. Benchmarking
will be used to measure the speed of the processor developed. Several benchmarks will
be provided to test our microprocessor. We will measure the execution time the
processor requires to run each benchmark program and report the results.

The basic modules used to construct the microprocessor are described in the following
subsections.

1.1 Arithmetic Logic Unit (ALU) Module

1.1.1 Inputs and Outputs
Inputs: [0:4] aluop, [0:1] ww, [0:127] reg_a, [0:127] reg_b
Outputs: [0:127] result

1.1.2 Functional Test Results
The ALU is composed of addition (see section 3), shift (see section 4), and multiplication
(see section 5) logic.

1.1.3 Synthesis Results
The ALU is composed of addition (see section 3), shift (see section 4), and multiplication
(see section 5) logic.

1.1.4 Post-Synthesis Functional Test Results
The ALU is composed of addition (see section 3), shift (see section 4), and multiplication
(see section 5) logic.

1.2 Control Module

1.2.1 Inputs and Outputs
Inputs: [0:31] instruction
Outputs: [0:4] aluop, [0:4] rrdaddra, [0:4] rrdaddrb, [0:4] rwraddrd, [0:2] regop,
[0:1] ww, [0:20] maddr, memEn, memWrEn, [0:15] wbyteen, [0:127] immediate,
(reginmuxop, aluinmuxop will also be included to control multiplexers in the
pipeline as described in the next section)

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 6 of 48

1.2.2 Functional Test Results
Functional testing of the control logic was performed to ensure that the control logic was
generating the expected signals for a given input stream of instructions. The input stream
of instructions tested *each possible instruction at the time of implementation.

*The multiplication instructions had not implemented before the original
Functional testing of the control logic, and therefore are not tested at the module
level.

The following instructions were tested and the output of the control module was carefully
scrutinized to the internal logic was correct. As can be seen in the waveforms below, the
control logic is very important – it provides signals to all other modules to control their
operation.

The following instructions were checked:
32'b00010001101010100101100000000000; // ADD
32'b00010001101010100101101001000000; // ADD
32'b00010001101010100101110000000000; // ADD
32'b00010001101010100101110001000000; // ADD
32'b00010001101010100101110010000000; // ADD
32'b00010001101010100101110010001001; // AND
32'b00000101101000000000000000000001; // LD
32'b00100001101010100000010010001001; // VMV
32'b00010001101010100000010100001000; // NOT
32'b00010001101010100101110101001010; // OR
32'b00010001101010100101110100001100; // PRM
32'b00010001101010100101110101010000; // SLL
32'b00010001101010100111110110010001; // SLLI
32'b00010001101010100101110110010110; // SRA
32'b00010001101010100111110110010111; // SRAI
32'b00010001101010100101110110010100; // SRL
32'b00010001101010100111110110010101; // SRLI
32'b00001001101000000000000000000001; // ST
32'b00010001101010100101111001000001; // SUB
32'b00010001101010100101111101001011; // XOR
32'b00000001101010100101110110001011; // NOP

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 7 of 48

1.2.3 Synthesis Results
The following results were found in the control.area report:

Number of ports: 226
Number of nets: 129
Number of cells: 98
Number of references: 9
Combinational area: 2548.000000
Noncombinational area: 0.000000
Total cell area: 2548.000000

The following timing information was extracted from the timing report:

Max delay: 0.95 delay units.

The check_design report indicated that some input nets were not used and that some
output nets were shorted together, or shorted to logic 0. We looked into these and found
that all warnings were expected.

1.2.4 Post-Synthesis Functional Test Results
Using the same instruction set, the same results were obtained from the netlist generated
by the synthesis tool (see below).

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 8 of 48

1.3 Data Memory Module (provided – see constraints above)

1.3.1 Inputs and Outputs
Inputs: clk, wren, memEn, [0:7] memAddr, [0:127] dataIn
Outputs: [0:127] dataOut

1.3.2 Functional Test Results
There was no need to test the data memory module individually since it was provided to
us and we were unable to alter it.

1.3.3 Synthesis Results
The data memory module was unsynthesizeable, as advertized when it was provided to us,
therefore we did not attempt to synthesize it.

1.3.4 Post-Synthesis Functional Test Results
Since no synthesis was performed, no post synthesis functional testing was performed
either.

1.4 Instruction Memory Module (provided – see constraints
above)

1.4.1 Inputs and Outputs
Inputs: [0:7] addr
Outputs: [0:31]instruction

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 9 of 48

1.4.2 Functional Test Results
There was no need to test the instruction memory module individually since it was
provided to us and we were unable to alter it.

1.4.3 Synthesis Results
The instruction memory module was unsynthesizeable, as advertized when it was
provided to us, therefore we did not attempt to synthesize it.

1.4.4 Post-Synthesis Functional Test Results
Since no synthesis was performed, no post synthesis functional testing was performed
either.

1.5 Program Counter Module

1.5.1 Inputs and Outputs
Inputs: clk and reset
Outputs: [0:20] program_counter

1.5.2 Functional Test Results
The following waveform was generated by the program counter. As you can see, the
value of the program counter increments by 4 each positive clock edge – which will
allow us to address the next 32 bit wide memory location in the instruction memory.

1.5.3 Synthesis Results
The following results were found in the control.area report:

Number of ports: 34

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 10 of 48

Number of nets: 102
Number of cells: 66
Number of references: 4
Combinational area: 3576.000000
Noncombinational area: 3072.000000
Total cell area: 6648.000000

The following timing information was extracted from the timing report:

Max delay: 5.0 delay units.

The check_design report indicated that one of the synthesized cells did not drive any nets.
We kept this in mind while testing the functionality of the synthesized code and found
that the warning could be ignored (see next section).

1.5.4 Post-Synthesis Functional Test Results
Using the same inputs, the same results were obtained from the netlist generated by the
synthesis tool (see below).

1.6 Register File Module

1.6.1 Inputs and Outputs
Inputs: clk, [0:127] wrdata, wren, rd1en, rd2en, [0:4] wraddr, [0:4] rd1addr, [0:4] rd2addr,
[0:15] wbyteen
Outputs: [0:127] rd1data, [0:127] rd2data

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 11 of 48

1.6.2 Functional Test Results
It is difficult to fit the results into a single screen shot, but below are a few screenshots
showing that several registers are written to then later the correct values are read from the
registers.

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 12 of 48

1.6.3 Synthesis Results
The following results were found in the control.area report:

Number of ports: 24
Number of nets: 421
Number of cells: 405
Number of references: 10
Combinational area: 9600.000000
Noncombinational area: 6912.000000
Total cell area: 16512.000000

The following timing information was extracted from the timing report:

Max delay: 2.25 delay units.

The check_design report was empty, indicating no errors and no warnings.

1.6.4 Post-Synthesis Functional Test Results
Using the same inputs, the same results were obtained from the netlist generated by the
synthesis tool (see below).

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 13 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 14 of 48

1.7 Mux Module

1.7.1 Inputs and Outputs
Inputs: [0:127] dataIn1, [0:127] dataIn2, select
Outputs: [0:127] dataOut

1.7.2 Functional Test Results
As can be seen below, the mux functions as expected.

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 15 of 48

Due to the simplicity of the module (out<=sel?inb:ina;), synthesis and post synthesis
testing were not required.

2 CPU Pipeline
Minimizing execution time is the goal of this project. Therefore a pipeline was
implemented to increase the throughput. The benchmark instruction set is expected to be
long, so the small additional latency should be overshadowed by the increase in
throughput. Traditionally, processors are pipelined into the following 5 stages:

• Instruction Fetch (IF) – An instruction is fetched from the instruction memory
• Instruction Decode and Register Fetch (ID/RF) – The instruction is decoded and

the applicable registers are fetched from the register file
• Execution (EX) – The ALU is used to perform the required operation on the data

from the registers
• MEMory access (MEM) – the data memory is written to or read from
• WriteBack – the result of the data memory or ALU operation are written back to

the register file.

For this project, we were able to combine the MEM and EX stages of the pipeline since
each of the instructions in the instruction set EITHER access memory OR use the ALU
(but not both, as non-immediate memory access would). Therefore, we implemented the
following 4-stage pipeline:

• Stage 1 – IF
• Stage 2 – ID/RF
• Stage 3 – EX/MEM
• Stage 4 – WB

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 16 of 48

Flip Flops (FF) were used between stages 1 and 2, between stages 2 and 3, and between
stages 3 and 4 to create the pipeline. The FFs between stages 1 and 2 are contained in a
module called Pipe1. The FFs between stages 2 and 3 are contained in a module called
Pipe2. The FFs between stages 3 and 4 are contained in a module called Pipe3. The
entire pipeline is shown in the following figures:

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 17 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 18 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 19 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 20 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 21 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 22 of 48

It should be noted that the register file in stage 2 is the same register file in stage 4. In
stage 2, only the read capability of the register file is exercised. In stage 4, only the write
capability is exercised. Therefore an instruction in stage 2 can use the read side of the
register file while an instruction in stage 4 of the pipeline can simultaneously access the
write side of the register file.

As with any pipeline, it can only be operated at the speed of the slowest stage. In the
pipeline design shown above, the MEM/EX stage (stage 3) is the slowest stage. Since the
module representing the data memory is provided, there is no chance to optimize it.
However, the ALU module is not provided, and therefore can be carefully designed to
minimize latency. This design will be described in the following sections (3-6).

When a processor is pipelined, the possibility for data hazards is created. Section 7
addresses these hazards and shows how data forwarding was used to eliminate all data
hazards.

2.1 CPU Module

2.1.1 Inputs and Outputs
Inputs: clk, reset, [0:31] instruction, [0:31] pc, [0:127] dataIn,
Outputs: [0:127] dataOut, memEn, memWrEn, memAddr

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 23 of 48

2.1.2 Functional Test Results
The following instruction set was used to test the cpu module:

07E00000 // wld wr31, 0 ;
04A00001 // wld wr5, 1 ;
121FF881 // wsubaw wr16, wr31, wr31 ;
1225FA4B // wxoruh wr17, wr5, wr31 ;
11F00008 // wnotab wr15, wr16 ;
1245FC89 // wandew wr18, wr5, wr31 ;
23100400 // wmveb wr24, wr16 ;
23050500 // wmvob wr24, wr5 ;
1265FD4A // woroh wr19, wr5, wr31 ;
129FFB40 // wadddh wr20, wr31, wr31 ;
102F3815 // wsrliab wr1, wr15, 7 ;
12BFF850 // wsllah wr21, wr31, wr31 ;
12DFC016 // wsraab wr22, wr31, wr24 ;
12FFC094 // wsrlaw wr23, wr31, wr24 ;
133F1011 // wslliab wr25, wr31, 2 ;
135F0857 // wsraiah wr26, wr31, 1 ;
0AA00002 // wst wr21, 0x02 ;
13FFF80A // worab wr31, wr31, wr31 ;
13FFF80A // worab wr31, wr31, wr31 ;
13FFF80A // worab wr31, wr31, wr31 ;
13FFF80A // worab wr31, wr31, wr31 ;
04E00003 // wld wr7, 3
05000004 // wld wr8, 4
13C74000 // addab wr30, wr7, wr8 ;
13A74000 // addab wr29, wr7, wr8 ;
13874000 // addab wr28, wr7, wr8 ;
13674000 // addab wr27, wr7, wr8 ;
13C74044 // mules wr30, wr7, wr8 ;
13A74045 // muleu wr29, wr7, wr8 ;
13874046 // mulos wr28, wr7, wr8 ;
13674047 // mulou wr27, wr7, wr8 ;
00000000 // NOP ;

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 24 of 48

The outputs were carefully scrutinized to ensure that re result of each operation was
stored in the correct location.

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 25 of 48

And the data memory was correct after the run:
Memory location # 0 : 0011332266775544ccddffeeaabb9988
Memory location # 1 : 55555555555555555555555555555555
Memory location # 2 : 0022cc883b805440a0008000d8008800
Memory location # 3 : 00000000000000000000000000000202
Memory location # 4 : 00000000000000000000000000000303
Memory location # 5 : xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
…
Memory location # 63 : xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

At this point hazard detection had already been implemented as can be seen by the
signals hz1_a_or_d, hz1_b, hz3_a_or_d, and hz3_b. Detailed disussion about the hazards
in the above functional test will be discussed in section 7.

2.1.3 Synthesis Results
See section 9.

2.1.4 Post-Synthesis Functional Test Results
The post synthesis functional test results show that the cpu has the same functionality
after synthesis.

As part of this project, the following 6 random instruction sets were generated to
determine the speed of the pipelined processor:

<INCLUDE HERE>

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 26 of 48

3 Instruction set implementation
The instruction set introduced in the introduction is described in detail in this section.
The rest of this section has been copied with permission from the USC document for
EE577B Fall 2007 isa_ov.pdf.

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 27 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 28 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 29 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 30 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 31 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 32 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 33 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 34 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 35 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 36 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 37 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 38 of 48

4 Adder/Subtractor design
The Synopsys DesignWare intellectual property (IP) library consists of high performance
IP blocks for system development and integration to reduce development time, and time-
to-market (Cohen et al, 1996). Given the short design time of this processor project and
the high performance requirement, we decided to utilize the virtual microarchitecture
library from DesignWare IP to implement the adder design (Synopsys, 2001). This would
save us time from implementing advanced adder designs, using Verilog, in structural
RTL. It would also save us numerous man-hours from iterating the design process to
verify that the design functions correctly, and optimize the design for high performance
within our aggressive schedule.

(Koren, 1993)

Some adder designs
http://www.ece.iit.edu/~jstine/book/

http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=835116

Simulators for various adder designs, along with other arithmetic circuits, can be obtained
at http://www.ecs.umass.edu/ece/koren/arith/simulator/.

4.1 Functional Test Results
See section 8.

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 39 of 48

4.2 Synthesis Results
The following results were found in the control.area report:

Number of ports: 391
Number of nets: 4270
Number of cells: 3623
Number of references: 43
Combinational area: 17115.000000
Noncombinational area: 0.000000
Total cell area: 17115.000000

The following timing information was extracted from the timing report:

Max delay: 7.11 delay units.

The check_design report indicated that six of the synthesized cells did not drive any nets.
We kept this in mind while testing the functionality of the synthesized code and found
that the warnings could be ignored.

4.3 Post-Synthesis Functional Test Results
See section 10.

5 Shifter Design

5.1 Functional Test Results
See section 8.

5.2 Synthesis Results
TBD – redesigned and removed latches

5.3 Post-Synthesis Functional Test Results
See section 10.

6 Multiplier Design

6.1 Functional Test Results
See section 8.

6.2 Synthesis Results
The following results were found in the control.area report:

Number of ports: 391
Number of nets: 32234
Number of cells: 27146
Number of references: 222
Combinational area: 1410694.000000
Noncombinational area: 0.000000

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 40 of 48

Total cell area: 1410694.000000

The following timing information was extracted from the timing report:

Max delay: 37.5 delay units.
This is by far the worst delay of any of the ALU functions. Therefore this is on the
critical path in the pipelined CPU. See Section 11 for more about this.

The check_design report indicated that 777 of the synthesized cells did not drive any nets.
We kept this in mind while testing the functionality of the synthesized code and found
that the warnings could be ignored.

6.3 Post-Synthesis Functional Test Results
See section 10.

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 41 of 48

7 Hazard management and data forwarding
Hazard detection occurs due to the pipelining process when multipleinstructions in the
pipeline are accessing the same storage location (register file memory location). The
hazard detection module inspects theinstruction signals in all stages of the pipeline at the
same time as shown below:

There are two types of data hazards in the 4 stage pipeline described in section 2. These
hazards are described below.

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 42 of 48

Data forwarding is used to overcome HZ1. The data paths used to forward data and avert
HZ1 are highlighted in the figure below:

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 43 of 48

Data forwarding is used to overcome HZ3. The data paths used to forward data and avert
HZ3 are highlighted in the figure below:

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 44 of 48

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 45 of 48

7.1 Functional Test Results
From section 2, the following hazards exist:

HEX INSTR BINARY INSTRUCTION TYPE REGD REGA REGB

HAZARD
DETECTION
SIGNALS

07E00000 000001_11111_00000_00000_00000000000 wld wr31, 0

04A00001 000001_00101_00000_00000_00000000001 wld wr5, 1

121FF881 000100_10000_11111_11111_00010000001 wsubaw wr16, wr31, wr31 HZ1_a_or_d, HZ1_b

1225FA4B 000100_10001_00101_11111_01001001011 wxoruh wr17, wr5, wr31 HZ1_a_or_d

11F00008 000100_01111_10000_00000_00000001000 wnotab wr15, wr16 HZ1_a_or_d

1245FC89 000100_10010_00101_11111_10010001001 wandew wr18, wr5, wr31

23100400 001000_11000_10000_00000_10000000000 wmveb wr24, wr16

23050500 001000_11000_00101_00000_10100000000 wmvob wr24, wr5

1265FD4A 000100_10011_00101_11111_10101001010 woroh wr19, wr5, wr31

129FFB40 000100_10100_11111_11111_01101000000 wadddh wr20, wr31, wr31

102F3815 000100_00001_01111_00111_00000010101 wsrliab wr1, wr15, 7

12BFF850 000100_10101_11111_11111_00001010000 wsllah wr21, wr31, wr31

12DFC016 000100_10110_11111_11000_00000010110 wsraab wr22, wr31, wr24

12FFC094 000100_10111_11111_11000_00010010100 wsrlaw wr23, wr31, wr24

133F1011 000100_11001_11111_00010_00000010001 wslliab wr25, wr31, 2

135F0857 000100_11010_11111_00001_00001010111 wsraiah wr26, wr31, 1

0AA00002 000010_10101_00000_00000_00000000010 wst wr21, 2

13FFF80A 000100_11111_11111_11111_00000001010 worab wr31, wr31, wr31

13FFF80A 000100_11111_11111_11111_00000001010 worab wr31, wr31, wr31

13FFF80A 000100_11111_11111_11111_00000001010 worab wr31, wr31, wr31

HZ1_a_or_d, HZ1_b,

HZ3_a_or_d, HZ3_b

13FFF80A 000100_11111_11111_11111_00000001010 worab wr31, wr31, wr31

HZ1_a_or_d, HZ1_b,

HZ3_a_or_d, HZ3_b

04E00003 000001_00111_00000_00000_00000000011 wld wr7 3 HZ3_a_or_d, HZ3_b

05000004 000001_01000_00000_00000_00000000100 wld wr8 4

13C74000 000100_11110_00111_01000_00000000000 addab wr30 wr7 wr8 HZ1_a_or_d

13A74000 000100_11101_00111_01000_00000000000 addab wr29 wr7 wr8 HZ1_b, HZ3_b

13874000 000100_11100_00111_01000_00000000000 addab wr28 wr7 wr8

13674000 000100_11011_00111_01000_00000000000 addab wr27 wr7 wr8

13C74044 000100_11110_00111_01000_00001000100 mules wr30 wr7 wr8

13A74045 000100_11101_00111_01000_00001000101 muleu wr29 wr7 wr8

13874046 000100_11100_00111_01000_00001000110 mulos wr28 wr7 wr8

13674047 000100_11011_00111_01000_00001000111 mulou wr27 wr7 wr8

00000000 000000_00000_00000_00000_00000000000

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 46 of 48

From section 2, the following waveform was generated depicting the hazard detection
signals hz1_a_or_d, hz1_b, hz3_a_or_d, and hz3_b. It can be seen that the waveform
matches the expected result above.

8 Optimization
ME

9 Synthesis Report
ME
(nicely compiled not the output of the tool)

10 Final specifications of your designs
ME
(claims)

11 Possible Future Enhancements
If more time was allowed to complete this project, we would have investigated other
multiplication algorithms and even pipelined the multiplier because it is the slowest
function of the ALU. If the multiply operation took multiple clocks to accomplish and all
most other instructions only took a single clock in the MEM/EX stage, then overall the
program’s execute time for the benchmarks would decrease because the clock frequency
that controls the pipeline could be increased.

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 47 of 48

12 Conclusion
Whatever you do, reduce the workload for the next class you teach – this semester
required more hours per week for school than previous semesters when I took 2 classes,
and was miserable - seriously. I am so glad it is finally over.

EE577b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

 Page 48 of 48

13 References

