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1 Introduction

This report documents the process of designing and testing a 128 bit microprocessor to
implement a limited set of instructions. The goal of this project is to create a
microprocessor and maximize its speed. The design process is outlined below:

* Develop a conceptual design

* Divide the design into modules

* Implement each module with Register Transfer Logic (RTL) style Verilog
Hardware Description Language (HDL)
Test each module functionally using NcVerilog
Synthesize all modules developed using Synopsys Design Compiler
Verity each module synthesizes correctly via post synthesis functional testing
Integrate all modules and test functionality
Synthesize the Central Processing Unit (CPU) module
Verify the top level design synthesized correctly via post synthesis functional
testing
Note: The process described above must be iterated to develop an optimal solution.

The instruction following instruction set has been implemented:

Wide word addition (WADD)

Wide word AND (WAND)

Wide word load from data memory using immediate addressing (WLD)

Wide word signed multiplication of the even bytes or double-bytes (a double-byte
is 16 bits) (WMULES)

Wide word signed multiplication of the odd bytes or double-bytes (WMULOS)
Wide word unsigned multiplication of the even bytes or double-bytes (WMULEU)
Wide word unsigned multiplication of the odd bytes or double-bytes (WMULOU)
Wide word move (WMV)

Wide word NOT (WNOT)

Wide word OR (WOR)

Wide word byte permute (WPRM)

Wide word shift logical left (WSLL)

Wide word shift logical left immediate (WSLLI)

Wide word shift arithmetic right (WSRA)

Wide word shift arithmetic right immediate (WSRAI)

Wide word shift logical right (WSRL)

Wide word shift logical right immediate (WSRLI)

Wide word store to data memory using immediate addressing (WST)

Wide word subtraction (WSUB)

Wide word XOR (WXOR)

Note: branch and jump commands were not implemented - this greatly simplifies the
design.

The design of the microprocessor will be constrained by the following:
* The design must interface to a predefined Instruction Memory RTL style Verilog
HDL module (this module is included in section xx).
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* The design must interface to a predefined Data Memory RTL style Verilog HDL
module (this module is included in section xx).

* Top level functional testing must be accomplished using a predefined Verilog
HDL test bench (this module is included in section xx).

*  The multiplier will not use the “*” symbol available in RTL style Verilog HDL
(this is because the synopsis design compiler available at USC uses a sub-optimal
multiplier when it encounters the “*” symbol in RTL style Verilog HDL).

Benchmarking is a common practice of measuring speed in the industry. Benchmarking
will be used to measure the speed of the processor developed. Several benchmarks will
be provided to test our microprocessor. We will measure the execution time the
processor requires to run each benchmark program and report the results.

The basic modules used to construct the microprocessor are described in the following
subsections.

1.1 Arithmetic Logic Unit (ALU) Module

1.1.1 Inputs and Outputs

Inputs: [0:4] aluop, [0:1] ww, [0:127] reg_a, [0:127] reg_b
Outputs: [0:127] result

1.1.2 Functional Test Results

The ALU is composed of addition (see section 3), shift (see section 4), and multiplication
(see section 5) logic.

1.1.3 Synthesis Results

The ALU is composed of addition (see section 3), shift (see section 4), and multiplication
(see section 5) logic.

1.1.4 Post-Synthesis Functional Test Results

The ALU is composed of addition (see section 3), shift (see section 4), and multiplication
(see section 5) logic.

1.2 Control Module
1.2.1 Inputs and Outputs

Inputs: [0:31] instruction

Outputs: [0:4] aluop, [0:4] rrdaddra, [0:4] rrdaddrb, [0:4] rwraddrd, [0:2] regop,
[0:1] ww, [0:20] maddr, memEn, memWrEn, [0:15] wbyteen, [0:127] immediate,
(reginmuxop, aluinmuxop will also be included to control multiplexers in the
pipeline as described in the next section)
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1.2.2 Functional Test Results

Functional testing of the control logic was performed to ensure that the control logic was
generating the expected signals for a given input stream of instructions. The input stream
of instructions tested *each possible instruction at the time of implementation.
*The multiplication instructions had not implemented before the original
Functional testing of the control logic, and therefore are not tested at the module
level.
The following instructions were tested and the output of the control module was carefully
scrutinized to the internal logic was correct. As can be seen in the waveforms below, the
control logic is very important — it provides signals to all other modules to control their
operation.

The following instructions were checked:
32'b00010001101010100101100000000000; // ADD
32'b00010001101010100101101001000000; // ADD
32'b00010001101010100101110000000000; // ADD
32'b00010001101010100101110001000000; // ADD
32'b00010001101010100101110010000000; // ADD
32'b00010001101010100101110010001001; // AND
32'b00000101101000000000000000000001; // LD
32'b00100001101010100000010010001001; // VMV
32'b00010001101010100000010100001000; // NOT
32'b00010001101010100101110101001010; // OR
32'b00010001101010100101110100001100; // PRM
32'b00010001101010100101110101010000; // SLL
32'b00010001101010100111110110010001; // SLLI
32'b00010001101010100101110110010110; // SRA
32'b00010001101010100111110110010111; // SRAI
32'b00010001101010100101110110010100; // SRL
32'b00010001101010100111110110010101; // SRLI
32'b00001001101000000000000000000001; // ST
32'b00010001101010100101111001000001; // SUB
32'b00010001101010100101111101001011; // XOR
32'b00000001101010100101110110001011; // NOP
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1.2.3 Synthesis Results

The following results were found in the control.area report:

Number of ports: 226

Number of nets: 129

Number of cells: 98

Number of references: 9
Combinational area: 2548.000000
Noncombinational area: 0.000000
Total cell area: 2548.000000

The following timing information was extracted from the timing report:
Max delay: 0.95 delay units.

The check design report indicated that some input nets were not used and that some
output nets were shorted together, or shorted to logic 0. We looked into these and found
that all warnings were expected.

1.2.4 Post-Synthesis Functional Test Results

Using the same instruction set, the same results were obtained from the netlist generated
by the synthesis tool (see below).
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1.3 Data Memory Module (provided — see constraints above)

1.3.1 Inputs and Outputs

Inputs: clk, wren, memEn, [0:7] memAddr, [0:127] dataln
Outputs: [0:127] dataOut

1.3.2 Functional Test Results

There was no need to test the data memory module individually since it was provided to
us and we were unable to alter it.

1.3.3 Synthesis Results

The data memory module was unsynthesizeable, as advertized when it was provided to us,
therefore we did not attempt to synthesize it.

1.3.4 Post-Synthesis Functional Test Results

Since no synthesis was performed, no post synthesis functional testing was performed
either.

1.4 Instruction Memory Module (provided — see constraints
above)

1.4.1 Inputs and Outputs

Inputs: [0:7] addr
Outputs: [0:31]instruction
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1.4.2 Functional Test Results

There was no need to test the instruction memory module individually since it was
provided to us and we were unable to alter it.

1.4.3 Synthesis Results

The instruction memory module was unsynthesizeable, as advertized when it was
provided to us, therefore we did not attempt to synthesize it.

1.4.4 Post-Synthesis Functional Test Results

Since no synthesis was performed, no post synthesis functional testing was performed
either.

1.5 Program Counter Module

1.5.1 Inputs and Outputs

Inputs: clk and reset
Outputs: [0:20] program_counter

1.5.2 Functional Test Results

The following waveform was generated by the program counter. As you can see, the
value of the program counter increments by 4 each positive clock edge — which will
allow us to address the next 32 bit wide memory location in the instruction memory.

File Edit Yiew Explore Format Simulation Windows Help

Floosmex mnthE 8- g ST g B B R OB i
Search Names: | Signal v | % % SearchTimes: Value v BB
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[ © Qe
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1.5.3 Synthesis Results

The following results were found in the control.area report:
Number of ports: 34
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Number of nets: 102

Number of cells: 66

Number of references: 4
Combinational area: 3576.000000
Noncombinational area: 3072.000000
Total cell area: 6648.000000

The following timing information was extracted from the timing report:
Max delay: 5.0 delay units.

The check design report indicated that one of the synthesized cells did not drive any nets.
We kept this in mind while testing the functionality of the synthesized code and found
that the warning could be ignored (see next section).

1.5.4 Post-Synthesis Functional Test Results

Using the same inputs, the same results were obtained from the netlist generated by the
synthesis tool (see below).
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FEile Edit View Explore Format Simulation Windows Help
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1.6 Register File Module

1.6.1 Inputs and Outputs

Inputs: clk, [0:127] wrdata, wren, rdlen, rd2en, [0:4] wraddr, [0:4] rd1addr, [0:4] rd2addr,
[0:15] wbyteen

Outputs: [0:127] rd1data, [0:127] rd2data
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1.6.2 Functional Test Results

It is difficult to fit the results into a single screen shot, but below are a few screenshots
showing that several registers are written to then later the correct values are read from the

registers.
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1.6.3 Synthesis Results

The following results were found in the control.area report:

Number of ports:
Number of nets:
Number of cells:
Number of references:
Combinational area:
Noncombinational area:
Total cell area:

24

421

405

10
9600.000000
6912.000000
16512.000000

The following timing information was extracted from the timing report:

Max delay:

2.25 delay units.

The check design report was empty, indicating no errors and no warnings.

1.6.4 Post-Synthesis Functional Test Results
Using the same inputs, the same results were obtained from the netlist generated by the

synthesis tool (see below).
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1.7 Mux Module

1.7.1 Inputs and Outputs

Inputs: [0:127] datalnl1, [0:127] dataln2, select
Outputs: [0:127] dataOut

1.7.2 Functional Test Results
As can be seen below, the mux functions as expected.
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) Executing commands in consale

Due to the simplicity of the module (out<=sel?inb:ina;), synthesis and post synthesis
testing were not required.

2 CPU Pipeline

Minimizing execution time is the goal of this project. Therefore a pipeline was
implemented to increase the throughput. The benchmark instruction set is expected to be
long, so the small additional latency should be overshadowed by the increase in
throughput. Traditionally, processors are pipelined into the following 5 stages:
¢ Instruction Fetch (IF) — An instruction is fetched from the instruction memory
* Instruction Decode and Register Fetch (ID/RF) — The instruction is decoded and
the applicable registers are fetched from the register file
¢ Execution (EX) — The ALU is used to perform the required operation on the data
from the registers
* MEMory access (MEM) — the data memory is written to or read from
*  WriteBack — the result of the data memory or ALU operation are written back to
the register file.

For this project, we were able to combine the MEM and EX stages of the pipeline since
each of the instructions in the instruction set EITHER access memory OR use the ALU
(but not both, as non-immediate memory access would). Therefore, we implemented the
following 4-stage pipeline:

e Stage1-1IF

* Stage 2 —ID/RF

e Stage 3 - EX'MEM

e Stage4-WB
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Flip Flops (FF) were used between stages 1 and 2, between stages 2 and 3, and between
stages 3 and 4 to create the pipeline. The FFs between stages 1 and 2 are contained in a
module called Pipel. The FFs between stages 2 and 3 are contained in a module called
Pipe2. The FFs between stages 3 and 4 are contained in a module called Pipe3. The
entire pipeline is shown in the following figures:

IF ID/RF MEM/EX WB

reset - i’
——— Program | Instruction
Counter Memory —
(PC) (256x32) e ’Pipe1
reg
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Pipe1

Instruction[0:127] Instruction1[0:127]
Pipe1
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L : Pi
o | IN O af_ +6’I d2 || |RegB pe3
_?—?_’OMUX hzidata [0:127] ‘ X | MUIX leg
ndfdatal0:127] 7
m?l:lﬂll:if!! ALU
: : 5 Tgahd1 27 "
Sl o E
|
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Pipe3

whyteen2f): 15}, | windeen 30 15],
regwen? regwrend
renaddnd2]0:4],| rwraddad 30 4],
regnmuxop? | regnmcop3
Pipe3
reg
aliOuti-127] aluOu3{0:127]
instruction2{0:127] nstruction3{0:127]
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WB

datalnj0:127]
&
whyleen3{0:15] feset ] < Register
regwren3 .| File
_ (32x128)
e
Pipe3 —IREG wedataf0:12]]
reg > IN
MUX
aOW3{0:127] pipe2
instruction3{0:127]

It should be noted that the register file in stage 2 is the same register file in stage 4. In
stage 2, only the read capability of the register file is exercised. In stage 4, only the write
capability is exercised. Therefore an instruction in stage 2 can use the read side of the
register file while an instruction in stage 4 of the pipeline can simultaneously access the
write side of the register file.

As with any pipeline, it can only be operated at the speed of the slowest stage. In the
pipeline design shown above, the MEM/EX stage (stage 3) is the slowest stage. Since the
module representing the data memory is provided, there is no chance to optimize it.
However, the ALU module is not provided, and therefore can be carefully designed to
minimize latency. This design will be described in the following sections (3-6).

When a processor is pipelined, the possibility for data hazards is created. Section 7
addresses these hazards and shows how data forwarding was used to eliminate all data
hazards.

2.1 CPU Module

2.1.1 Inputs and Outputs

Inputs: clk, reset, [0:31] instruction, [0:31] pc, [0:127] dataln,
Outputs: [0:127] dataOut, memEn, memWrEn, memAddr
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2.1.2 Functional Test Results

The following instruction set was used to test the cpu module:
07E00000 // wld wr31,0;
04A00001 // wld wr5, 1 ;
121FF881 // wsubaw wrl6, wr3l, wr3l ;
1225FA4B // wxoruh wrl7, wr5, wr31 ;
11F00008 // wnotab wrl5, wrl6 ;
1245FC89 // wandew wrl8, wr5, wr3l ;
23100400 // wmveb wr24, wrl6 ;
23050500 // wmvob wr24, wr5 ;
1265FD4A // woroh wrl9, wr5, wr31 ;
129FFB40 // wadddh wr20, wr31, wr31 ;
102F3815 // wsrliab wrl, wrl5, 7 ;
12BFF850 // wsllah wr21, wr31, wr31 ;
12DFCO016 // wsraab wr22, wr31, wr24 ;
12FFC094 // wsrlaw wr23, wr31, wr24 ;
133F1011 // wslliab wr25, wr31, 2 ;
135F0857 // wsraiah wr26, wr31, 1 ;
0AA00002 //wstwr21, 0x02 ;
13FFF80A // worab wr31, wr31, wr31 ;
13FFF80A // worab wr31, wr31, wr31 ;
13FFF80A // worab wr31, wr31, wr31 ;
13FFF80A // worab wr31, wr31, wr31 ;
04E00003 // wld wr7, 3
05000004 // wld wr8, 4
13C74000 // addab wr30, wr7, wr8 ;
13A74000 // addab wr29, wr7, wr8 ;
13874000 // addab wr28, wr7, wr8 ;
13674000 // addab wr27, wr7, wr8 ;
13C74044 // mules wr30, wr7, wr8 ;
13A74045 // muleu wr29, wr7, wr8 ;
13874046 // mulos wr28, wr7, wr8 ;
13674047 // mulou wr27, wr7, wr8 ;
00000000 // NOP ;
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And the data memory was correct after the run:
Memory location # 0:0011332266775544ccddffeeaabb9988

Memory location # 1 :55555555555555555555555555555555
Memory location # 2 :0022cc883b805440a0008000d8008800
Memory location # 3 :00000000000000000000000000000202
Memory location # 4 : 00000000000000000000000000000303
Memory location # 5 I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Memory location # 63 : XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

At this point hazard detection had already been implemented as can be seen by the
signals hzl a or d, hzl b, hz3 a or d, and hz3 b. Detailed disussion about the hazards

in the above functional test will be discussed in section 7.

2.1.3 Synthesis Results

See section 9.

2.1.4 Post-Synthesis Functional Test Results

The post synthesis functional test results show that the cpu has the same functionality
after synthesis.

As part of this project, the following 6 random instruction sets were generated to
determine the speed of the pipelined processor:

<INCLUDE HERE>

Page 25 of 48



EES77b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

3 Instruction set implementation

The instruction set introduced in the introduction is described in detail in this section.
The rest of this section has been copied with permission from the USC document for
EE577B Fall 2007 isa_ov.pdf.

Chapter 1 - Troy WideWord Processor Instruction Set Overview

Notation This chapter gives an mstruction set overview and the following chapter gives a detailed mstruction deseniption. All
17

mstructions are 32 bits. Big-Endian byte and bit labeling 15 used, meaning that bit'byte 0 1s the most sigmificant. Other
conventions are listed in the table below.

TABLE 1. Instruction Glossary

Syvmbol Meaning Symbol Meaning
4« B | Assignment x*y | % bifwise exclusive ORed with v
fx¥} |Bitsiing concatenation ~X birwise inversion of x
v{x}} | xreplicated v himes MEM[EA] | Memory contents at effective address EA
w[y:z] | Selection of bits v through z from x| Oxvalue |Hexadecimal value
x &y |xbitwise ANDed with y Obvalue |Binary value
x|y |xbitwise ORed with y (£30) Contents of general-purpose register X

The following table gives the rules of precedence and associativity for the pseudocode operators. All operators on the
same line have equal precedence, and all operators on a given line have higher precedence than those on the lmes
below them

TABLE 2. Precedence of Pseudocode Operators

Operator Assoclativity
MEM[n] lett to nght
®[vz] [eft to right

{yixy [eft to right
- right to [eft
[eft to right

+ - Teft to right
left to nght
left to nght
[eft to right
Teft to right

— none
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Instruction Formats As shown in Figure 1. most Troy WideWord instructions use a three-operand format to specify rwo 128-bit source
registers (wrA and wrB) and a 128-bat destination register (wrD). Load and store use a different instruction format
shown mn Figure 2. Note that these classifications are generalizations, and some mstructions will vary somewhat from
the format for which 1t 15 classified. For instance. the mmediate mstructions are classified as W-type instruc-
tions, although they specify a 5-bit immediate shift amount in the place of wiB. The end result is that not all W-type
instructions can be decoded in exactly the same wayv: the wiB field may be a register specifier or it may be a 5-bit
immediate.

6 bits 3 bits 5 bits 3 bits 3 bits 2 bits 6 bits
opeode wrD wrA wiB | PFP | ww | function

Figure 1 Format W for WideWord Arithmetic/Logical Operations

6 bits 5 bits 21 bits
opeode | rD immediate address

Figure 2 Format M for Wide-Word Load/Store Operations

The control fields are defined as follows
T (width)
The 2-bit T field =
shift eperations, confi
icoding of these b

e width of the
zuration of the car

table:

W Value Operand Width Actembler Mnemonic
] % bits B
B L
] w
1 .

PPP (participation)
The 3-bit PPP, or participation. field specifies what kind of selective execution
selective execution ertamn subfields comum eir results during writeback stage. The subifl
specified by the decoding of PPP. The encoding of the PPP bits 1s listed m the followmg table:

FPEF Value Participation Definition Assembler Muemonic

000 All subfields participate

001 reserved

010 Upper &4-bits pa

01 Lower 64-bits d
100 Subfelds with even inde: B
101 Subfelds with odd index @
110 Only most sizvificant subfiel m
111 Culy least 1

1dices or most/least sigmficant subfiel e exX ts that participate

able shows the possible subfield indices for the different
3 always the most significant regardless of operand size):

1d. The followin
at Biz-Endian lzbeling 15 used so that subfield 0

depend also on t
values of IWIF (rzcall 1

Subfield Indices within a WideWord for Differing Operand Widihs
most least
WW Value || iz sig.
[ 0 1 2 3 4 5 s 7 B 3 w | n R
[0} o 1 2 3 4 5 6 7
10 ] 1 2 3

This table may be useful for visualizing which subfield(s) participate based on the selective execution mode and
operand width value. For mnstance. an “upper” participate mode using 32-bit operands means that only words 0 and 1
partictpate

Page 4 0f26
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Alphabetical list of

instructions TABLE 3. Preliminary Encoding of DIVA Instruction Set
Frcoqmz
In:truction | Format ELTE Thit Thit Thit Bt
WADD W WD WA wiB 0
WAND w D = Wil
WD WD mredinga
WRITLES WD = Wi
[WAILLED wrD wr2
WALLLOS wiD wiZ
VAMTLOT wiD wid
WAV wrD
WROT wiD
(WOR wrD w2
WERAL wiD wiE
WS wrD WIE
WSLIT wiD “Iifi_amount
[WSRA wrD wi2
WSEAT WD Shift_smoter
TSR W D
TWSELT w WD
WST i wiD
WSUE W wrD |
WXOR W wiD |
Page 5 0f 26
waddy - WideWord Add
waddpr  wrD, wrA, wirB
‘ ‘ wrD | WrA wrB
0 36 w1 15 16 20 21 15 26 31

Variable values in the following equations are as follows:

WW Value size
0 H
a1 16
10 32

111 = wor

28-bit contents of wrA and wiB are treate vtes, 16 half-wo

wrB are placed into wrD), subject

3. The aggregate su

waddx - WideWord Add Page 7of26
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wandy - WideWord AND

wandpr  wrD, wrA, wirB

| o [ wiB PEEWW 001001

0 36 w1 15 16 2021 25 26 31

Variable values in the following equations are as follows:

W Value size
—
[T 2
a1 14
10 32

for1=10+to (128 - size) by size

if PPP bits enable writeh

size=111] & (wrBi[i-(i=(size=111]

A NDed with the 128-bat contents of wiB, and the result 1s placed mto wiD). subject to participation. The
es for this operation.

wandx - WideWord AND Page 8 0f26

wld - Load WideWord Register

wld wrD, immediate_address

| 000001 ‘ wrD | immediate_address

0 36 1011 31

EA  {immedizta_asddress, 4{0}}

wrD + MEMIEA]

A, munits of bytes, 4 zeros
wrD.

bit wide words. Thus, to obtam an effective a
ue at the memory location specified by EA 15 then loaded I

The immediate_address 15 ned to be n nmts
are appended to the immediate_address. The 128-bit val

wld - Load WideWord Register Page 9 0f26
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wmules - WideWord Multiply Even Signed

wmulespw wrD, wrA, wirB

| oooioo | o [ wiB PPEWW 000100
0 56 011 15 16 0 21 25 26 31
WIW Value input zize output size
(28 2 16
10 15 32

In the equation below. the variable size refers to the input size given in the table above

Pii=(size=1)1]

If-word of wiB,
1ed halfword or

wimnules - WideWord Multiply Even Signed

Page 10 of 26

winuleu - WideWord Multiply Even Unsigned

winuleupw wrD, wrA, wrB

| om0 | wp [ wa wiB 000101
0 56 1011 15 16 20 21 25 26 31
WW value input size output size
a1 3 16
10 14 32

In the equation below. the varable size refers to the input size given n the table above

fori=01t0 (128 - 2 xsiza) by 2 x size

if PPF bits enable writeback for this subfield

wrDi(i+ (2 % size = 11)] & (wed ) [i:(i + (zize = 10T = (wrBO[i:0i + (size = 11]]

din

s multiplied by the correspon
A and wrB are treated as byte
subject to participation

or half-word of
gned half-

wimulen - WideWord Multiply Even Unsigned

Page 30 of 48
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wmulos - WideWord Multiply Odd Signed

wmulospw wrD, wrA, wrB

| oooioo | o [ wiB PEEWW 000110
0 56 1011 15 16 0 21 25 26 1
WIW Value input zize output size
(28 2 16
10 15 32

In the equation below. the variable size refers to the input size given in the table above

foword of wiB,
ned halfword or

wmulos - WideWord Multiply Odd Signed Page 12 of 26

wmulou - WideWord Multiply Odd Unsigned

winuloupw wrD, wrA, wrB

000100 wiD | wri wrB a00111
011 13 18 20021 15 26 31
WW Value input size output size

01 3 16

10 15 32
In the equation below. the varable size refers to the input size given n the table above
fori=01t0 (128 - 2 xsiza) by size

if PPF bits enable writeback for this subfield

wrD[i(i+ (2 % size = 11)] o= (wrd ) [(F + size):(i + (2 % size = 1))] % (wr B[ (i + size): (i = (2 % zize = 1}}]

word or word products

bered unsigned-int

W field detern 1
e placed. m the same order, 1

4 15 multiplied by the correspondi
A and wrB are treated as byte
subject to participation

gned half-

wmulou - WideWord Multiply Odd Unsigned

Page 31 of 48
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wmvyx - Move from WideWord to WideWord

wmvp wrD, wraA

| ooto00 | o [ 00000 PRPWW 000000

0 36 w1 15 16 2021 25 26 31

Variable values in the following equations are as follows:

W Value size
—
[T 2
a1 14
10 32

for1=10+to (128 - size) by size

if PPP bits enable writeh

bt contents of wrA are transferred to wrD. subject to the participation mode specified by PPP. The W
how participation applies for this operation

field simply effects

wimnvx - Move from WideWord ro WideWord Page 14 of 26

wnoty - WideWord NOT

wootpw  wrD, wrA

| om0 | wp [ wa 00000 PPEWW 001000

0 36 wi 15 16 021 15 26 31

Variable values in the following equations are as follows

WW Value size
L
] 3
a 15
10 31

for1=010 {128 - size) by 2

if PPF bits enable writeback for this subfield

wrD[i(i+(size = 1)}] = ~(wrd)[i:(1+ (zize - 1])]

The 122-bit
how partic

ntents of wrA are bitw
en applies for thi:

inverted, and the result is placed mto wrD), subject to participation. The WW field stmply effects
peration

wnotx - WideWord NOT Page 15 of 26
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worx - WideWord OR

worpw wrD, wrA, wrB

000100 wiD | wrA wrB PPPWW 001010

0 36 w1 15 16 2021 25 26 31

Variable values in the following equations are as follows:

W Value size
—
[T 2
a1 14
10 32

for1=10+to (128 - size) by size
if PPP bats enable wniteback for this subfield
wrD[i(i+isize = 1)) = {wrd)[i-(i= (5ize = 11)] | (wrB)[ii+ (size—1)1]

arA are ORed with the 122-bit contents of wrB. and the result is placed into wrDd. subject to participation. The TWW
how participation apphies for this operation.

worx - WideWWord OR Page 16 of 26

wprmy - WideWord Permute

wprinp wrD, wrA, wrB

0 wD [ wia wiB PFP00 001100
0 56 011 15 16 0 21 25 26 31

s wrBi[(i+4n(i+T)]

if PPF bits enable wnteback for this byte subfield

5

wrDi:(i=T1] 4= (wrd)[s % 8:((s x 8) = 7)]

fwrB are usad to
articipation

r for this permutation operation. Bits 4 to 7 of each byte element of the co
placed into wrD, st

The contents of wrA are the source
select a byte element from ce vector for each byte element of the result. The result

wprmx - WideWord Permute Page 17 of 26
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wsllv - WideWord Shift Left Logical

wsllpw wrD, wrA, wrB

| oooioo | o [ wiB PEEWW 010000

0 36 w1 15 16 2021 25 26 31

Variable values in the following equations are as follows:

W Value size bit:
—
0 ] 3
01 16 4
10 32

for1=0+10 (128 - size) by s

e (wrBi[

if PPF bits enable writzback for t]

wrD[iz{i+isize - 1)}

The V
data field of wrd a
of wrB. inserting zeros i

wsllx - WideWord Shift Left Logical Page 18 of 26

wslliv - WideWord Shift Left Logical Immediate

wsllipw wrD, wrA, shift amount

010001

‘ 000100 ‘ wil | wrA | shift_amount

0 36 wi 15 16 021 15 26 31

Variable values in the following equations are as follows

WW Value size bit:
L
] 3 3
a 15 n
10 31

ck for this subfield

The contents of each data field
zeros mto the low order bits of

of wrA are treated as 32 bytes, 16 half-wor
by the appropriate bits of the shift_a
ed into wrD), subject to participation

willix - WideWord Shift Left Logical Immediate Page 19 of 26

Page 34 of 48



EES77b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

wsrax - WideWord Shift Right Arithmetic

wsrapw wrD, wrA, wirB

| oooioo | o [ wiB PEEWW 010110

0 36 w1 15 16 2021 25 26 31

Variable values in the following equations are as follows:

W Value size bit:
—
0 ] 3
01 16 4
10 32

for1=10+to (128 - size) by size

e (wrBi[

if PPF bits enable writzback for t]

The WW field deternume:
data field of wrA are shift
of wrB, sign-ext

ds. or & words. The ¢
ng data field

wsrax - WideWord Shift Right Arithmetic Page 20 of 26

wsraiv - WideWord Shift Right Arithmetic Immediate

wsraipw  wrD, wrA, shift amount

| oo | wb | wa | ufemows | PPPWW 010111

0 36 wil 15 16 20 21 25 26 31

Vartable values in the following equations are as follows:

WW Value size bit:
[ 2 3
a 15 4
10 32 5

s, or 8 words. The contents of zach data field
gn-extending the high-order bits of each

wsraix - WideWord Shift Right Arithmetic Immediate
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wsrlv - WideWord Shift Right Logical

wsrlpw wrD, wrA, wrB

| oooioo | o [ wiB PEEWW 010100

0 36 w1 15 16 2021 25 26 31

Variable values in the following equations are as follows:

W Value size bit:
—
0 ] 3
01 16 4
10 32

for1=0+10 (128 - size) by s

e (wrBi[

if PPF bits enable writzback for t]

ds. or & words. The ¢
ponding data field
s placed mto wiD, subject to participation.

The WW field deternume:
data field of wrA are sh
of wrB. inserting zeros i

wsrlx - WideWord Shift Right Logical Page 22 of 26

wsrliv - WideWord Shift Right Logical Immediate

wstlipw  wrD, wrA, shift amount

010101

‘ 000100 ‘ wil | wrA | shift_amount

0 36 wi 15 16 021 15 26 31

Variable values in the following equations are as follows

WW Value size bit:
L
] 3 3
a 15 n
10 31

ck for this subfield

vrD[i:(i = (size— 11)] & {a{ 0}, (wrd)[i:(i + size -5 - 1)1}

of each data field
-order bits of

of wrA are treated as 32 bytes, 16 half-words, or § w
b 15 specified by opriate bits of the snft_amount. inserting zeros inte
It 15 placed into wrD), subject to participation

ield determines if the 122-bit cont

wsrlix - WideWord Shift Right Logical Immediate Page 23 of 26
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wst - Store WideWord Register

wst wrD, immediate address

| 000010 | wrD | immecdiate_address

izte_address, 4{0}}

MEMIEA] « (wirD)

The immediate_address sumed to be in umits of 128- ide words. Th

are appended to the immediate_address. The 128-bit conten

to obtain an effective address. EA. in units of bytes, 4 zeros
of wrl} are storsd at the memory location specified b

wst - Store WideWord Register Page 24 of 26

wsubx - WideWord Subtract

wsubpw  wrD, wrA, wirB

| om0 | wp [ wa wiB PPEWW 000001

0 36 wi 15 16 021 15 26 31

Variable values in the following equations are as follows

WW Value size
L
] 3
a 15
10 31

for1=010 {128 - size) by 2

if PPF bits enable writeback for this subfield

wrD[a(i= (zize = 1] e (wrdd[i(i= (zize = 11)] = ~(wrBI[i:(i = (rize = 1)1] = 1

The WW field determines if the 128-bit contents of wrA and wrB are eate
ences of the aligned data fizlds of wrA and wrB are placed into wrD, subject to

. 16 half-werds, or 8 words. The aggregate differ-
on

wsubx - WideWord Subtract Page 25 of 26
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wxory - WideWord Exclusive-OR

wxorpw wrD, wrA, wrB

| oooioo | o [ wiB PEEWW 001011
56 1011 15 16 20 21 25 26 31

Variable values in the following equations are as follows:

W Value size
—
[T 2
a1 14
10

for1=10+to (128 - size) by size
if PPP bats enable wniteback for this subfield
wrD[i:(i = (size = 11)] 4= {wrd)i:(i + (size = 13] ™ (wrBi[i-(i + (size-11)]
The 128-bit contents of wrA are exclusive-ORed with the 128-bit contents of wrB. and the result is placed into wrD), subject to participation
The WW field simply effzcts how participation applies for this operation

wxorx - WideWord Exclusive-OR Page 26 of 26

4 Adder/Subtractor design

The Synopsys DesignWare intellectual property (IP) library consists of high performance
IP blocks for system development and integration to reduce development time, and time-
to-market (Cohen et al, 1996). Given the short design time of this processor project and
the high performance requirement, we decided to utilize the virtual microarchitecture
library from DesignWare IP to implement the adder design (Synopsys, 2001). This would
save us time from implementing advanced adder designs, using Verilog, in structural
RTL. It would also save us numerous man-hours from iterating the design process to
verify that the design functions correctly, and optimize the design for high performance
within our aggressive schedule.

(Koren, 1993)

Some adder designs
http://www.ece.iit.edu/~jstine/book/

http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=835116

Simulators for various adder designs, along with other arithmetic circuits, can be obtained
at http://www.ecs.umass.edu/ece/koren/arith/simulator/.

4.1 Functional Test Results
See section 8.
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4.2 Synthesis Results

The following results were found in the control.area report:

Number of ports:
Number of nets:
Number of cells:
Number of references:
Combinational area:
Noncombinational area:
Total cell area:

391

4270

3623

43
17115.000000
0.000000
17115.000000

The following timing information was extracted from the timing report:

Max delay:

7.11 delay units.

The check design report indicated that six of the synthesized cells did not drive any nets.
We kept this in mind while testing the functionality of the synthesized code and found

that the warnings could be ignored.

4.3 Post-Synthesis Functional Test Results

See section 10.

5 Shifter Design

5.1 Functional Test Results

See section 8.

5.2 Synthesis Results

TBD — redesigned and removed latches

5.3 Post-Synthesis Functional Test Results

See section 10.

6 Multiplier Design

6.1 Functional Test Results

See section 8.

6.2 Synthesis Results

The following results were found in the control.area report:

Number of ports:
Number of nets:
Number of cells:
Number of references:
Combinational area:
Noncombinational area:

391

32234

27146

222
1410694.000000
0.000000
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Total cell area: 1410694.000000

The following timing information was extracted from the timing report:

Max delay: 37.5 delay units.
This is by far the worst delay of any of the ALU functions. Therefore this is on the
critical path in the pipelined CPU. See Section 11 for more about this.

The check design report indicated that 777 of the synthesized cells did not drive any nets.
We kept this in mind while testing the functionality of the synthesized code and found
that the warnings could be ignored.

6.3 Post-Synthesis Functional Test Results

See section 10.
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7 Hazard management and data forwarding

Hazard detection occurs due to the pipelining process when multipleinstructions in the
pipeline are accessing the same storage location (register file memory location). The
hazard detection module inspects theinstruction signals in all stages of the pipeline at the

same time as shown below:

Hazard

There are two types of data hazards in the 4 stage pipeline described in section 2. These
hazards are described below.

Hazard Detection — HZ1

* reg read by instruction in stage 2 is reg
written to by instruction in stage 4

Signals out of Pipes 1-3

Instruction IF RFAD EX/MEM _‘ WB !j

Instruction2 IF RF/D EX/MEM WB
r
Instruction IF @:HD EX/MEM WB
N o
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Data forwarding is used to overcome HZ1. The data paths used to forward data and avert
HZ1 are highlighted in the figure below:

MEM/EX

|H30u=[5:127|
| aluop2{0:4) DATA  |suaino-12n
ww2{0:1] MEM
memEn admemWER |
reAIA]
) e A0 T5]
Pipe2| reywen
Reg rwraddrd2{0:4]
TegnMUXopZ q
) !
. o1
T U | oot immediate o:127] regh P regb ;
- IN ! 1 61 a2 |) | RegB Pipe3
rd2data [0:127] > | reg
rdidataj:127] [} Y
méiaa(nﬂzr]‘ ALU
: : jahat1 FETZT] "
: L, [T B
Pipe2 et [0:127] | e jlj m} & RegA o127
reg Instruction2{0:127] ;.‘ .‘% ‘..,"I o :
= = x I
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Hazard Detection — HZ3

» wst reg for instruction in stage 3 is reg
written to by instruction in stage 4

Signals out of Pipes 1-3

Instruction IF RF/ID EXIMEMl_ WB m]

L
Instruction2 IF RFAD X/MEM wB

IF RFAD EX/MEM WB

Data forwarding is used to overcome HZ3. The data paths used to forward data and avert
HZ3 are highlighted in the figure below:

Page 43 of 48



EES77b Troy Processor Project
by Zhyang Ong zhiyang@ieee.org and Andrew Mattheisen amattheisen@gmail.com

MEM/EX

mﬁ:ﬂn
|_akiop2(0:4) DATA  |guano1on
ww2[0:1] MEM
emEn el memWiER |
TemAGU-20] o
. —Whyleen 2 0-T5] i
Pipe2| egwen ;
Beq rwraddd2{0:4]
TEgEMIMUX0pZ
o }
immexdiate2(0:1 U . ; o=t 141 j
N n2data immediate [0:127] 0 n;?lb 61 '?‘an RegB Pipe3
ni?data [0:127] ; T i reg
: 1 MUX hetdata [0:127] | | o
nd1dataf0:127]
' : ; wegahd1 127 -
O lsgﬁa F6 '3% E
—Ly
Pipe2 hziiata [0:127] ‘ = x| ﬂ _nnl #| RegA akOuj0:127]
reg Instruction2{0:127] ::" - ol § "
E I £y "
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7.1 Functional Test Results
From section 2, the following hazards exist:

HAZARD
DETECTION
HEX INSTR BINARY INSTRUCTION TYPE REGD REGA REGB SIGNALS
07E00000 000001_11111_.00000_.00000_.00000000000 wlid wr31,
04A00001 000001_.00101_.00000.00000_.00000000001 wlid wrd,
121FF881 000100_10000_11111_11111_00010000001 wsubaw wr16, wr31, wr31 HZ1_aor.d, HZ1 b
1225FA4B 000100_10001.00101_11111.01001001011 wxoruh wrl7, wrb, wr31 HZ1_aord
11F00008 000100.01111_10000.00000_.00000001000 wnotab wr15, wr16 HZ1_aord
1245FC89 000100_.10010.00101_11111_.10010001001 wandew wr18, wrb, wr31
23100400 001000_11000_10000_.00000_10000000000 wmveb wr24, wr16
23050500 001000_11000.00101_00000_10100000000 wmvob wr24, wrb
1265FD4A 000100_.10011.00101_11111_.10101001010 woroh wr19, wrb, wr31
129FFB40 000100_10100_11111_11111.01101000000 wadddh wr20, wr31, wr31
102F3815 000100.00001_.01111_.00111_00000010101 wsrliab wrl, wr15, 7
12BFF850 000100_10101_11111_11111_.00001010000 wsllah wr21, wr31, wr31
12DFC016 000100_10110_11111_11000_.00000010110 wsraab wr22, wr31, wr24
12FFC094 000100_10111_11111_11000_.00010010100 wsrlaw wr23, wr31, wr24
133F1011 000100_11001_11111_.00010_.00000010001 wslliab wr25, wr31, 2
135F0857 000100_11010_11111_.00001_00001010111 wsraiah wr26, wr31, 1
0AA00002 000010_10101_.00000_.00000_.00000000010 wst wr21,
13FFF80A 000100_11111_11111_11111.00000001010 worab wr31, wr31, wr31
13FFF80A 000100_11111_11111_11111.00000001010 worab wr31, wr31, wr31
HZ1_aor.d, HZ1 b,
13FFF80A 000100_11111_11111_11111.00000001010 worab wr31, wr31, wr31 HZ3_aor.d, HZ3 b
HZ1_aor.d, HZ1 b,
13FFF80A 000100_11111_11111_11111.00000001010 worab wr31, wr31, wr31 HZ3_a_or_d, HZ3 b
04E00003 000001_00111.00000.00000_.00000000011 wlid wr7 HZ3_a_or_d, HZ3 b
05000004 000001_.01000.00000_.00000_.00000000100 wlid wr8
13C74000 000100_11110.00111_.01000_.00000000000 addab wr30 wr7 wr8 HZ1_aord
13A74000 000100_11101_.00111_.01000_.00000000000 addab wr29 wr7 wr8 HZ1b, HZ3 b
13874000 000100_11100.00111_.01000_.00000000000 addab wr28 wr7 wr8
13674000 000100_11011_.00111_.01000_.00000000000 addab wr27 wr7 wr8
13C74044 000100_11110.00111_.01000_.00001000100 mules wr30 wr7 wr8
13A74045 000100_11101_.00111_.01000_.00001000101 muleu wr29 wr7 wr8
13874046 000100_11100.00111_.01000_.00001000110 mulos wr28 wr7 wr8
13674047 000100_11011_.00111_.01000_.00001000111 mulou wr27 wr7 wr8
00000000 000000.00000.00000_.00000_.00000000000
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From section 2, the following waveform was generated depicting the hazard detection
signals hzl a or d, hzl b, hz3 a or d, and hz3 b. It can be seen that the waveform
matches the expected result above.

——————— e =10l

Vaveforn 1 -~ Silision ]
R - on Windows tilp
e [ inexREeBE § 4 - QECBEYEE

Search Names: | Signal v | % %  SearchTimes: Value v BB
i B[ TimeA <[ =[50 Sl age g | DR D R Simula 81 | Time Range: [0 3%0ns -

Baseline = 0
Cursor-Baseline = 390ns.

&
£ Cursor ~

@ aluOut “h000»

- aluOut3
aluinmuxop
aluinmuxop2 {0

- aluop

- aluop2
clk
dataln

- dataln3 0 00 00 00 0
dataOut : 0 0 00000* 00 0 0 3 o o 0» (0011
hz1_a_or_d
hz1_b

. hzldata  [’hooo» | [0000000000000000000 0 5> JOr |5 0» J0r 5 |5 J0r JO» J0r JO» (O [O» JO» JO» (00113 0» {0» [0000000000* (0000000000
hz3

hz3_a_or_d
hz3_b
- immediate 0 000000000000000 (F» [0000> [F¢
- immediate2 0 0 00
instruction h [ 0 0
- instruction "h { 0 o | it 1 3 0 T (D (I (Tr
- instruction2 ’h b (00 000 [or Yor I 1 > [Tr D Ty 0 3 02 or VTr (T» Tr
- instruction3  |’h 0 000 10 (T X ] 0 € 0 v D Iy D I
memAddr ’h 0 0 0 j 0 8 0 0» [0» JO» (O [Or
. “emAddr_pre |”hxxx» > (000000 [or (1o | 0» 1 |0 80 0» [0» /07400 0» 10» [O» (0> JOr
memEn
em

| &} Executing commands in console: 11 object selected

8 Optimization
ME

9 Synthesis Report

ME
(nicely compiled not the output of the tool)

10 Final specifications of your designs

ME
(claims)

11 Possible Future Enhancements

If more time was allowed to complete this project, we would have investigated other
multiplication algorithms and even pipelined the multiplier because it is the slowest
function of the ALU. If the multiply operation took multiple clocks to accomplish and all
most other instructions only took a single clock in the MEM/EX stage, then overall the
program’s execute time for the benchmarks would decrease because the clock frequency
that controls the pipeline could be increased.
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12 Conclusion

Whatever you do, reduce the workload for the next class you teach — this semester
required more hours per week for school than previous semesters when I took 2 classes,

and was miserable - seriously. I am so glad it is finally over.
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